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Research Questions and Motivation 

Steam, the world's largest digital distribution platform for PC gaming, faces unprecedented 
scaling challenges as it serves millions of concurrent users across its digital marketplace and 
social network. Developed by Valve Corporation, Steam has evolved beyond game distribution 
into a complex ecosystem supporting cloud gaming, virtual reality, and social networking. This 
exponential growth in both content and users presents unique challenges in data management and 
user experience optimization. 

Research Questions 

● How can network analysis of user interaction patterns be leveraged to create accurate 
game recommendations while minimizing latency and computational overhead? 

● What network architectures and data distribution models would optimize the 
performance of a large-scale recommendation system serving millions of concurrent 
Steam users? 

● How can peer behavior analysis be implemented efficiently across Steam's distributed 
network to generate personalized recommendations? 

Motivation 

Steam's rapid scaling presents two intersecting challenges: managing computational resources 
across a distributed network while delivering increasingly personalized user experiences. 
This research addresses the critical balance between recommendation quality and system 
performance, with implications for large-scale digital platforms facing similar scaling challenges. 
The findings will contribute to developing network-efficient recommendation systems that 
maintain personalization quality while optimizing resource utilization. 

 
Related Work 

Previous research in gaming recommendation systems spans from fundamental algorithms to 
platform-specific implementations, focusing on scalability and user behavior. 

Player Behavior Analysis and Profiling: Sifa et al.'s work on game telemetry and player 
behavior (2018) established fundamental approaches to understanding player patterns through 
machine learning techniques. Their research demonstrated how behavioral profiling could be 
used to improve game recommendations, particularly when dealing with large-scale telemetry 
data from multiple games. 
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Cross-Game Player Analysis: Building on behavioral analysis, Sifa, Drachen, and Bauckhage 
(2021) conducted a comprehensive study of Steam platform data across over 3,000 games and 6 
million players. Their analysis of playtime patterns and game ownership revealed crucial insights 
into how players distribute their time across multiple games, providing valuable foundations for 
cross-game recommendation systems. 

Large-Scale Recommendation Systems: Gomez-Uribe and Hunt (2015) detailed Netflix's 
recommendation system architecture and methodologies, offering valuable insights for gaming 
platforms. Their work demonstrated how large-scale recommendation systems can balance 
algorithmic sophistication with system performance, particularly relevant for platforms handling 
millions of concurrent users. 

Resource Management: Delimitrou and Kozyrakis (2014) addressed critical infrastructure 
challenges through their Quasar system, demonstrating methods for improving resource 
utilization while maintaining service quality. Their findings on resource allocation and workload 
management are relevant for scaling recommendation systems across distributed networks. 

Social Network Influence: Bakshy et al. (2012) examined how social networks impact 
information diffusion through a large-scale experiment with 253 million subjects. Their findings 
on the role of weak versus strong ties in information propagation provide valuable insights for 
understanding how social connections influence game discovery and recommendations on 
gaming platforms. 

 
Data 

We are primarily using the Game Recommendations on Steam dataset from Kaggle. It includes 
the following three dataframes. 

● Games: Stores the properties of more than 50,000 Steam games, such as titles, prices and 
ratings. 

○ Diverse Game Attributes: This dataframe captures multiple dimensions of each 
game, including user ratings, positive feedback ratios, user review comments, and 
pricing. These attributes allow for rich analyses, such as trends in user ratings 
over time, correlations between positive ratios and game popularity, and price 
trend analysis. 

● Recommendations: Detailed data of the users’ reviews on the games, including the 
hours played and the recommendation status in binary format. 

○ Engagement and Sentiment Data: This dataframe captures valuable insights into 
user behavior, including the number of hours played, recommendation status 
(recommended or not), and the helpful count, which shows how many users found 

https://www.kaggle.com/datasets/antonkozyriev/game-recommendations-on-steam?select=games.csv
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each review helpful. These attributes can help understand the relationship 
between a game entity and a user entity. 

● Users: Information about the users themselves, including the number of games owned 
and reviews posted. 

○ User Profile Insights: This dataframe provides a snapshot of each user's 
engagement with the platform, capturing key details such as the total number of 
games owned and the volume of reviews posted. These attributes can help 
identify user profiles into certain user categories. 

The dataset for this project was sourced from Kaggle, making the data collection straightforward 
as we simply downloaded the three datasets locally. To streamline our analysis, we decided to 
merge the user reviews and recommendations datasets based on user ID. This merging approach 
simplifies the dataset structure, enhancing clarity and facilitating more efficient data analysis.  

Data Exploration 

To look deeper into our three datasets: games.csv, recommendations.csv, and users.csv, each 
offering unique insights into user preferences and game attributes. The games.csv dataset 
encompasses 50,872 games, with a median of 49 user reviews per game and a median positive 
review ratio of 81%, highlighting a tendency toward positive user feedback. The 
recommendations.csv dataset provides detailed metrics on user engagement, recording an 
average of 100.6 play hours per user and a total of approximately 4.14 billion play hours across 
all users. The dataset also includes 35,304,398 positive recommendations and 5,850,396 negative 
ones. Finally, the users.csv dataset includes information on 14,306,064 users, 7,572 unique 
products, and a total of 41,154,794 reviews, providing a comprehensive view of user activity and 
product diversity. These datasets together form a robust foundation for analyzing user behaviors 
and game preferences. 

 

The visualization shows the distribution of rating types for games in the games.csv dataset, with 
most games receiving positive ratings. "Positive" (13,502 games) and "Very Positive" (13,139 
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games) are the most common, followed by "Mixed" (12,157 games). Negative ratings are rare, 
with categories like "Negative" (303 games) and "Overwhelmingly Negative" (14 games) 
comprising a small fraction. Overall, the data suggests a tendency toward favorable game ratings. 

 

The dominance of positive ratings (Positive and Very Positive) suggests that most games in the 
dataset are generally well-received by players, which could indicate that users are more likely to 
leave reviews for games they enjoy or that the market tends to favor higher-quality games. 

 

The visualization highlights the trends in the number of game releases over the years, showing a 
steady output from 2000 to 2010, followed by a rapid surge after 2010, peaking at over 7,000 
games around 2020. This growth aligns with key industry shifts, such as the rise of digital 
distribution platforms (e.g., Steam, Epic Games Store) and the increasing accessibility of game 
development tools like Unity and Unreal Engine, which have empowered indie developers. The 
sharp decline after 2020 may reflect incomplete data for recent years, disruptions such as the 
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COVID-19 pandemic, or a potential shift in production focus toward fewer, higher-quality titles 
or live-service games. This trend underscores the dynamic evolution of the gaming industry, 
shaped by technological advancements and market demands. 

Initial Setup for Network Analysis  

To create the bipartite graph between games and users, we combined the recommendations.csv 
and users.csv datasets by first standardizing the “user_id” column, converting it to a string 
format prefixed with "User_" in both datasets. The datasets were then merged on the “user_id” 
column to create the user_reviews dataset. To focus on positive interactions, rows where 
“is_recommended” was False were removed, leaving only reviews where users recommended 
the games. This refined dataset serves as the foundation for constructing the bipartite graph.  

Due to the large size of the original recommendations.csv dataset, processing the entire 
combined dataset would be computationally expensive and time-consuming. To address this, we 
selected a sample of 10,000 rows from the combined user_reviews dataset. This sampling 
approach ensures that our analysis remains efficient while still capturing sufficient diversity and 
representation of the data for meaningful insights. 

Bipartite Graph 

A bipartite graph is a type of graph where nodes can be divided into two distinct sets, and edges 
only exist between nodes from different sets. In this context, the graph connects users and games, 
representing user interactions and recommendations. Using a bipartite graph allows us to analyze 
relationships and patterns, such as which games are popular among certain user groups or how 
users with similar preferences interact with games.  

Here we used the sample dataset with 10,000 rows. first adds all game IDs (“app_id”) and user 
IDs (“user_id”) as nodes in two separate sets (bipartite = 0 for games and bipartite =1 for users). 
Then, edges are added between games and users based on the dataset, where each edge 
represents a user recommending a game. This graph is crucial for modeling user-game 
interactions and enabling network-based analyses, such as game recommendations or community 
detection. 
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Graph Exploration:  

Edges and Nodes 
 
Basic graph metrics were then calculated to gain insights into the graph's properties. The graph 
contains 18,474 nodes and 51,742 edges, where each edge represents a user recommending a 
game. The average degree, calculated as the total number of connections divided by the total 
nodes, is approximately 5.6, indicating that, on average, each node (game or user) is connected to 
about 5.6 other nodes. These metrics provide an overview of the graph's scale and connectivity, 
offering a foundation for further analysis. 
 
Analysis of Projected Graphs (including Centrality Measures, Clustering Coefficients) 
 
Projections are utilized to analyze the characteristics of game nodes and user nodes 
independently. The rationale for using separate projections is to avoid direct comparisons 
between different types of nodes, ensuring a more focused and meaningful analysis. These 
projections play a critical role in facilitating tasks such as link prediction, which is discussed in 
detail later in the report. 
 
a) Projected Graphs 
Projected graphs are essential for simplifying bipartite networks by focusing on one type of 
node. In this case, the game-game projection connects games that share common users, while 
the user-user projection connects users who recommended the same games. These projections 
allow us to analyze relationships and patterns within each specific group without the added 
complexity of bipartite structure. For example, the game projection helps identify closely related 
games based on shared audience preferences. 
 

 

The game-game projection consists of 9,273 distinct games, represented as nodes, that share at 
least one user, and 766,590 edges, indicating pairs of games reviewed or recommended by the 
same user. This projection highlights the rich connections between games, where overlapping 
user preferences lead to frequent co-recommendations or reviews, reflecting related genres or 
themes. Similarly, the user-user projection comprises 9,201 distinct users as nodes and 919,538 
edges, representing pairs of users who have reviewed or recommended the same game(s). This 
projection reveals significant user overlap, suggesting clusters of shared interests and behaviors 
among users who engage with similar types of games. 
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b) Degree Centrality & Clustering Coefficient 
 
Degree Centrality Analysis was conducted on the original bipartite graph to measure the 
importance of nodes. The degree of similarity quantifies how well-connected a node is with 
higher values indicating more connections. For games, this can highlight popular titles with wide 
user reach, while for users, it identifies individuals with diverse recommendations. 
 

 

The top games by degree centrality, such as 1091500 (Cyberpunk 2077) and 292030 (The 
Witcher® 3: Wild Hunt), have the highest centrality scores, meaning they are connected to many 
users and are highly popular or widely reviewed. These games likely have broad appeal, 
attracting a diverse group of players. On the other hand, the top users by degree centrality, 
including User_12463171 and User_6714378, are highly active and engaged with a wide range 
of games, indicating they have diverse preferences or contribute significantly to the game 
ecosystem. These users are key influencers, as they interact with many games, helping to shape 
the gaming community's tastes. 

The Clustering Coefficient measures the tendency of nodes to form tightly connected groups. 
For games, a higher clustering coefficient suggests a group of games frequently recommended 
together by users, potentially revealing similar genres or attributes. For users, it indicates clusters 
of like-minded individuals with similar preferences. These metrics provide insights into both 
network structure and behavioral patterns in the data. 

 

Games with a clustering coefficient of 1.0, such as 1146880 (RRRR3), are part of tightly-knit 
communities where every game connected to them is also connected to each other, suggesting 
they belong to niche genres or have strong user preferences. Similarly, users like 
User_12944107, with a clustering coefficient of 1.0, tend to review a specific set of related 
games, indicating their focus on particular game types or genres. 

c) Betweenness Centrality & Closeness Centrality 
 
For the calculations of betweenness and closeness centrality, which are computationally 
intensive and time-consuming, we plan to use a random sample of 5,000 records from the 
merged dataset. This sample is selected using scaled player hours as weights to prioritize more 
active users, while ensuring that highly active users had a higher likelihood of being included 
multiple times. This approach prioritizes computational feasibility while acknowledging the 
challenges of ensuring representativeness. By focusing on scaled player hours, we aim to reflect 
user activity levels in the sample.  
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Analysis of Top 5 Games by Centrality 
 
We analyzed the top 5 games based on their centrality measures, ranking them to highlight their 
relative importance within the network. 
 

 
 
 
Edge Weight Analysis 
 
Edge weight analysis examines the strength of connections between nodes in the game-game 
projection graph. In this context, edges between two game nodes are weighted by the number of 
users who interacted with both games. This metric highlights pairs of games with the most 
overlapping user bases, offering valuable insights for recommendation systems, user behavior 
studies, and market segmentation. 

By focusing on the highest-weight edges, the analysis uncovers meaningful relationships 
between games, revealing patterns in user behavior and preferences. For instance, users who play 
RPG games might also enjoy open-world exploration games, demonstrating cross-genre appeal. 
Similarly, connections within franchises emphasize the loyalty of users to specific game series 
(Results are shown below).  
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The analysis is based on a dataset sampled from 10,000 user-game interactions, introducing a 
degree of sparsity. This sparsity reflects the limited fraction of the overall user base captured in 
the sample. As a result, shared user counts between games are modest, ranging from 21 to 29 
users for the top edges. While these counts may underestimate the true extent of overlaps in 
larger datasets, they provide a representative view of broader trends. 

Despite these limitations, the results highlight key aspects of user behavior, including franchise 
loyalty, cross-genre engagement, and developer influence. Scaling this analysis to larger datasets 
could uncover additional patterns, validate these insights, and further refine applications such as 
recommendation systems and market strategies. 
 
Link Prediction Method: Weighted Random Walk 
 
Introduction 
 
Most link prediction research focused on unipartite networks, such as social networks, 
Webpages, and email networks. Compared with those cases, link prediction in bipartite graphs 
presents unique challenges due to the inherent structural constraints and sparsity of connections 
between two different types of sets of nodes. Unlike general graphs, bipartite graphs lack direct 
connections within each set, making it harder to infer relationships based solely on proximity or 
common neighbors. Additionally, real-world bipartite graphs, such as game-user networks, often 
exhibit extreme sparsity, where most nodes are connected to only a few others, limiting the 
available information for prediction. Random walk-based methods are well-suited for addressing 
these challenges because they leverage the graph’s global structure by simulating exploration 
across multiple paths. This approach allows for the discovery of indirect relationships, enabling 
the model to capture latent patterns and recommend connections that are not immediately 
obvious. Furthermore, random walks can be easily extended to incorporate edge weights, adding 
flexibility to prioritize certain relationships based on contextual importance, such as user 
engagement or preference strength. These advantages make random walks a compelling choice 
for link prediction in bipartite graphs.  
 
Step 1: Edge Weight Preparation - Data Scaling 
 
We plan to use play hours as the edge weights to represent the users’ strength of preference on 
the games. Scaling the play hours as edge weights is crucial for accurately reflecting the strength 
of relationships between users and games. Original play hours exhibit significant variability, with 
some users spending exponentially more time on certain games than others. Without scaling, this 
variability can disproportionately influence the random walk, skewing recommendations towards 
a few games with extremely high play times. Using a logarithmic transformation, such as scaling 
play hours with log(hours+1), reduces the impact of outliers while preserving the relative 



10 

differences between edges. This ensures that the model captures meaningful interactions and 
reduces the influence of extreme values, leading to more balanced and fair predictions. After 
scaling the play hours, we extracted a smaller sample of 8000 rows for prediction,while keeping 
the distribution of scaled hours. 

 
Distribution of the Original Play Hours and Scaled hours 

 
Step2: Train-Test Data Preparation 
 
The next step in creating a link prediction model involves splitting the graph into training and 
testing datasets while ensuring the graph remains connected. This step is crucial because 
removing edges arbitrarily may create disconnected components, reducing the validity of the 
training graph. We first identified the largest connected component of the graph to ensure we are 
working with a single, cohesive subgraph and then iteratively removed edges at random. After 
removing each edge, it was checked if the graph remained connected. As a result, 5% of the 
edges were removed as the test set. There were 6688 edges in the original graph, 6354 edges in 
the train set, and 334 test edges for evaluating the prediction. 
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Step 3: Naive Random Walk 
 
The naive random walk serves as the baseline for predicting links by simulating simple, random 
exploration of the graph. It is implemented by simulating random transitions within the graph to 
explore potential connections. Starting from a given user node, the algorithm alternates between 
users and games for a specified number of steps. At each step, the algorithm randomly selects a 
neighbor from the current node’s connections, reflecting the exploration of possible links within 
the graph’s structure. The process repeats for multiple independent runs, and the number of visits 
to each game node is tracked to generate recommendations. The implementation efficiently 
handles the graph traversal by iterating through neighbors and avoids termination errors by 
checking for the presence of neighbors at each step. While simple, this approach ignores the 
weights of edges, treating all connections equally, which limits its ability to prioritize stronger 
relationships. 
 
Step 4: Weighted Random Walk 
 
The weighted random walk enhances the naive version by incorporating edge weights into the 
algorithm, allowing for more targeted exploration. In the implementation, at each step, the 
algorithm calculates the transition probabilities by calculating the edge weights of the current 
node’s neighbors. This ensures that nodes with higher weights are more likely to be visited. 
These edges are likely to represent the users’ stronger preference on the connected game. If the 
edge weights sum to zero, a neighbor will be chosen uniformly at random to avoid errors. The 
algorithm tracks the visit counts of game nodes across multiple independent runs and excludes 
already played games from the recommendations. By integrating weights, the code adapts to the 
graph's contextual information, making the predictions more relevant and precise. 
 
Step 5: Evaluation 
 
The evaluation process measures the predictive performance of the random walk models by 
comparing predicted links to ground truth connections from the test set. After splitting the graph, 
the test set consists of removed edges representing real connections, while negative samples are 
generated by pairing users and games that are not connected in the training graph, with a 
balanced number of positive and negative samples. For each edge, the random walk model 
generates a ranked list of game nodes based on visit counts, where the count serves as the 
predicted score for each game. Predictions are evaluated using two metrics: accuracy, which 
calculates the proportion of correctly predicted edges among all predictions, and Area Under the 
Curve (AUC), which assesses the model's ability to rank true edges higher than false edges. The 
predict_edges function implements this process, ensuring stable performance with solutions for 
edge cases like missing nodes or zero weights. The framework provides a robust measure of the 
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model's precision and ranking ability, enabling direct comparisons between the naive and 
weighted random walk methods. 
 
Results 
 
The results of the prediction demonstrate the advantages of incorporating edge weights into the 
random walk process. While both the naive and weighted random walk models effectively 
explore the graph and generate meaningful recommendations, the weighted random walk 
consistently achieves higher accuracy and AUC scores. This improvement highlights the value of 
using edge weights to prioritize stronger relationships, such as games a user has spent more time 
playing. It was also found that the accuracy increases as the steps and number of rounds increase, 
but also makes it more time consuming. Taking the efficiency and accuracy into consideration, 
we finally chose the weighted random walk with 30 steps and 100 runs. 
 

 
 
Evaluation Results of the Two Models 
 
While the weighted random walk demonstrates improved accuracy over the naive approach, 
there are several approaches to further enhance prediction performance. First, incorporating 
additional features, such as node attributes, can provide richer information for the model. This 
can be achieved by extending the random walk to include biased transitions based on similarity 
between node attributes, which may be achieved by collaborative filtering. Second, the edges 
weights can be refined to reflect more detailed interactions, such as the users’ rating on the 
games. These enhancements would make the model more robust and better suited for complex, 
real-world link prediction scenarios. 
 
Challenges 
 
Our research encountered several significant challenges in analyzing Steam's network data and 
implementing link prediction algorithms. The sheer scale of the dataset presented substantial 
computational constraints, necessitating careful sampling strategies that balanced 
representativeness with tractability. While our 10,000-row sample provided valuable insights, it 
potentially undersold the true complexity of user-game interactions in Steam's complete 
ecosystem. The extreme sparsity of the bipartite graph posed another significant challenge, as 
most users interact with only a small fraction of available games, making it difficult to establish 
reliable connection patterns. 
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The heterogeneity of gaming behavior complicated our analysis, as play time distributions 
showed extreme variance – some users accumulated thousands of hours in single games while 
others spread limited time across many titles. This required careful consideration in edge weight 
scaling to prevent highly engaged users from dominating the random walk predictions. 
Additionally, the temporal nature of gaming interactions presented challenges, as user 
preferences and game popularity evolve over time, but our static graph representation couldn't 
capture these dynamics. 
 
Implementation of the weighted random walk algorithm faced technical hurdles in maintaining 
graph connectivity during train-test splits while preserving meaningful edge weights. The 
computational complexity of calculating centrality measures for the full network necessitated 
further sampling, potentially missing important structural properties. Finally, the lack of 
additional context about games (such as genres, release dates, or price points) and users (such as 
geographic location or platform preferences) limited our ability to validate and interpret the 
discovered network patterns. 
 
Conclusions 

This research provides valuable insights into the application of network analysis and link 
prediction for large-scale gaming platforms. Our analysis of Steam's user-game interactions 
through bipartite network modeling revealed significant patterns in gaming preferences and 
community structure. The implementation of weighted random walk algorithms demonstrated 
meaningful improvements over naive approaches in predicting user-game connections, achieving 
superior accuracy and AUC scores by incorporating play time as edge weights. 

The network metrics analysis revealed important structural properties of the gaming ecosystem. 
High clustering coefficients in both game and user projections indicated strong community 
formation around particular game types or user preferences. Centrality measures successfully 
identified influential games and users within the network, providing potential leverage points for 
recommendation systems. The edge weight analysis uncovered meaningful relationships between 
games, highlighting both expected connections (within franchises) and potentially valuable 
cross-genre relationships. 

Our findings have significant implications for gaming platforms and digital marketplaces. The 
success of weighted random walks in link prediction suggests that incorporating user 
engagement metrics (like play time) can substantially improve recommendation accuracy. The 
discovered network structure provides insights for content discovery and community building, 
while the challenges encountered offer valuable lessons for scaling recommendation systems. 
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Future work could extend this research by incorporating temporal dynamics, additional context 
features, and more sophisticated random walk variants. Integration with collaborative filtering 
techniques and exploration of other network algorithms could further improve prediction 
accuracy. Additionally, investigating the impact of network structure on game success and user 
retention could provide valuable insights for platform operators and game developers. 

This study contributes to the growing body of research on large-scale digital platforms and 
demonstrates the potential of network analysis in understanding and optimizing user experiences 
in gaming ecosystems. The methodologies developed here could be adapted for other digital 
marketplaces facing similar challenges in content discovery and recommendation. 
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